-
Notifications
You must be signed in to change notification settings - Fork 6.2k
如何得到每条数据的 loss #6165
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
@hiyouga 求教,感谢 |
意思是得自己调用这个 python 文件是嘛 |
尝试运行但是报错 The above exception was the direct cause of the following exception: Traceback (most recent call last): |
@Word2VecT fixed |
Reminder
System Info
llamafactory
version: 0.9.1.dev0Reproduction
torchrun --nnodes=1 --nproc-per-node=8 src/train.py
--deepspeed examples/deepspeed/ds_z3_config.json
--stage sft
--do_train
--use_fast_tokenizer
--flash_attn fa2
--model_name_or_path /mnt/petrelfs/tangzinan/LLaMA-Factory/models/LLama3.1-8B
--dataset gsm8k_train
--template llama3
--finetuning_type full
--output_dir saves/LLama3.1-8B/full/train_2024-11-14-22-43-17
--overwrite_cache
--overwrite_output_dir
--warmup_ratio 0.03
--weight_decay 0.
--per_device_train_batch_size 4
--gradient_accumulation_steps 8
--ddp_timeout 9000
--learning_rate 2e-5
--lr_scheduler_type cosine
--cutoff_len 4096
--save_steps 400
--logging_steps 1
--plot_loss
--num_train_epochs 1
--bf16
--report_to wandb
Expected behavior
SFT 微调训练完后,有什么方法能够 inference 一遍,得到每条数据对应的 loss 吗
Others
No response
The text was updated successfully, but these errors were encountered: